JOURNAL OF APPROXIMATION THEORY 4, 332--338 (1971)

Running Orthogonalization*
Joun R. RICE

Division of Mathematical Sciences, Purdue University, Lafayette, Indiana 47907

Received February 16, 1970

1. INTRODUCTION

This paper is motivated by the following

PROBLEM. Given data (f;,t;), j=1,2,.,K, basis functions ¢ft),
i=1,2,..,n, and € > 0, determine the index M so that the least squares
approximation to (f; , t;), j = 1, 2,..., M, (by the functions ¢t)) has an error
< e and M is the largest index for which this is true.

The obvious solution is to successively compute the least squares approxi-
mations to (f;, ¢;), j = 1, 2,..., L, and increase L until the error requirement
is violated. This solution leads, however, to a lengthy computation and,
hence, another process, running orthogonalization, is presented here which is
an order of magnitude more efficient.

Running orthogonalization is developed in a somewhat more abstract
form in the next section. The idea is similar in philosophy to updating the
inverse matrix (as in the simplex method), but the mechanics are not similar.
The efficiency of running orthogonalization is analyzed in the third section
and the results of a comparison of actual computations using several schemes
are presented. It is seen that running orthogonalization requires about twice
the computation as would be required if the value of M were known a priori
and one computed the least squares approximation on the first M data points
by an ordinary orthogonalization scheme.

2. RUNNING ORTHOGONALIZATION

We consider functions defined on a domain

T=TuUT,

* This work was partially supported by NSF grants GP-07163 and GP-05850.
332



RUNNING ORTHOGONALIZATION* 333

and an inner product denoted by (x, y). The restrictions of functions to T;
are denoted by superscript J, i.e.,

1 — f(t)5 tETls
f(’)_go, teT,,
arn 40, teTy,
f(t)*%f(t), teT,.

Inner products (f, g); are defined on 7}, j = 1, 2, and are related by:
(f,e)=Uheh + % 8D @.1)

The problem considered may be phrased as follows: Given a set
{pd|i=1,2,.., n}, orthonormal on 7;, and extensions ¢ determine
an orthonormal set {y;|i = 1, 2,..., n}, equivalent to {¢;} (i.e., the linear
spans in C(T) of {;} and {®,} are the same.) Further, given a function f(z),
its coefficients a;' of best least squares approximation by the ¢! and the
associated error 4, determine the corresponding quantities for approxi-
mation by the i, . The idea is to incorporate the fact that the ¢, are already
orthonormal on T into the determination of the ¢, . The running orthogonal-
ization procedure presented here to accomplish this is a version of the
Gram-Schmidt process.

The final formulas are presented below. The reader may verify that the ¢i2
given are in fact orthonormal and that the formules for the coefficients a,2 and
the associated error ¢2 are correct. We omit the superscripts 1 and 2 in the
inner products where no ambiguity is possible. The process is initialized by

i = @/l @ lls l@lP =14 (@1, P2 2.2)

and is continued, for k = 2, 3,..., n, as follows:
k-1
l/lk* = @r — z ((pk H ¢j)2 l)['i s (23)
i=1

ey 5 N PR R R CAA D WA N eX)

The coefficients and error are determined by

ol = [ad + opdi— B o bhoa] 07 @9

= [+ =3 @] 2.6



334 RICE

The basis for the efficiency of running orthogonalization is the fact that
these formulas contain only inner products on T, . Furthermore, the number
of inner products is the usual number for orthonormalization schemes.

The normal use of such a scheme involves a fixed basis throughout.
Functions may be represented as vectors of values in case T is a finite set.
The effect on efficiency of the choice of representation is discussed in the next
section. The preceding formulas may be restated in terms of a fixed set of basis
functions (e.g., powers of x, orthogonal polynomials, trigonometric
functions); we present these formulas which are somewhat tedious to obtain.

Let {P;|i = 1, 2,..., n} be the fixed basis and let

@dt) = Z riPAt), i=12,.,n,
)
2.7

n
¢1(t) == Z Siij(t), l = 1, 2,..., n,
i=1

be representations of the orthonormal sets {¢,} and {i,}. In practice, one
usually has r;; = s;; = 0 for j > i. The process is initialized by

Pu = (915 P2 > q = V1 + Pus
a? = [a! + (f, 0:/q, (2.8)

Sy = rylq, j=12,..,n.
It is continued for & = 2, 3,..., n as follows:

Dii = ((Pk N '7['9')2 s ] == 1, 2,..., k — 1, Prr = (¢k ) (Pk)2 >

k-1

g=[1+r—% )"

af=kﬁ+@¢m—zﬁwﬂﬁ= =

Skg = ("m' - kilpkzsw)/q’ j=12..,n

l=1

Finally, we have

= [e (- 3 @] (2.10)



RUNNING ORTHOGONALIZATION * 335

We note that almost identical formulas are valid in case
T=T,—T
and
(,8) =% 8gn— (/%89

The formulas (2.2) through (2.6) need only be modified by changing the sign
of the coefficients of the inner products on T, . The sum of squares terms in
(2.4) do not, of course, change sign. Further simple modifications cover the
case where T = (T, U T, — T,.

3. IMPLEMENTATION ASPECTS

The primary objective of this algorithm is to be efficient and thus it is
appropriate to compare it with alternative schemes. The classical approach is
to “count” the number of arithmetic operations required by an algorithm.
The shortcomings of this approach are well known, but it nevertheless may be
a useful guide. Later in this section we also present actual timing comparisons
and some remarks on accuracy and stability.

We assume that all the orthogonalization schemes considered are carried
out in the context of a fixed set of basis functions as in (2.7) and that Tis a
finite set. A key factor in the computation is then the work of evaluation of
the inner products and, in turn, the evaluation of the basis functions Py(t).
We consider three distinct cases:

A. @;(t) and ;(t) are polynomials in ¢ of exact degree j and are eval-
uated by j additions and multiplications whenever a value is required.

B. ¢(z)and ¢;(¢) are as in case A except that, when (¢ , ¥,) is required
for several values of j (typically, j = 1, 2,..., k), then the values of ¢,(¢) are
computed and temporarily stored during this computation.

C. oi(t) and $,(¢) are given by tables of values and thus may be
“evaluated” with no computation.

These three cases do not cover all possibilities, but are common ones. In
particular, they include the well-known trade-off between computational
speed and storage space in actual computation. This effect is illustrated by
the following simple

PrROBLEM. Compute the best least-squares approximation with N basis
Sfunctions where T has L points.



336 RICE

If one assumes appropriate equivalences between different arithmetic
operations, one has the comparison seen in Table 1.

TABLE 1

Illustration of the Trade-off Between Computational Work and Storage
Used in a Simple Least Squares Problem

Units of computation Storage required
LN? N3
Case A 2 —|-2LN2—{—T~2N2 N?
N3 N3
Case B G -}—2LN2—i—?—2N2 N+ L
N3
Case C LN? + 4LN + < " 2N? NL

Lower order terms have been neglected and the storage required refers only
to data for the representation of the functions involved. {Careless organization
will lead to 2NL for Case C).

We now compare the computational efforts required by three different
methods to compute the best least squares approximation to a function on
n -+ M + 1 points with polynomials of degree n. The methods are:

Method 1. Compute the best approximation on the set of L points ¢;,
j=12,..,LforL=n-+1ton-+ M+ 1.

Method 2. Use running orthogonalization starting with T, == {#, ,..., f,,1}
and successively taking T, = {t;} withj =n 4+ 2,..,n + M + 1.

Method 3. Compute the best approximation on the n + M 4 1 points
only using Gram-Schmidt orthogonalization.

Recall that in the application envisaged one cannot use Method 3 as the
value of M is not known. The units of computation required are tabulated
below for the nine combinations of methods and cases of representation.
The units are estimated on the basis of an examination of actual
algorithms (in Fortran), but they are only approximate due to the various
assumptions made. The most noteworthy fact seen in Table 2 is that the
expressions which Method 2 yields are linear in M while those obtained
by Method 1 are quadratic. Indeed, the “overhead” for runming ortho-
gonalization is rather modest compared to direct computation except for
Case C and large values of n.



RUNNING ORTHOGONALIZATION * 337
TABLE 2

Estimates of Units of Computation for Various Combinations of Methods
of Computation and Cases of Representation

Method 1 Method 2 Method 3
Case A n*M? n M + Tn*M? Sn3M sy nt M n n*M + n*
ase 1 2 ) 6 " 2 2 2 2
M2 Trn2M? M nM nt M nt
B 27 M + - M 4 =
Case 12 4 6 y TAIM At g Mt
2M2 3M
CaseC =~ S+ M M Y 3aeM 4w WM + M + n®

To further compare the efficiency of these methods, a large number of
actual computations have been timed. All programs used Case A in the
evaluation of the basis functions. The results of these computations are
summarized below.

(a) Running orthogonalization requires from 1.5 (for M = 5) to 2.1
(for M > 100) as much time as ordinary Gram—Schmidt orthogonalization
(Method 3). These factors are fairly independent of n for n < 8. The two
programs compared are as identical as possible except for the orthogonal-
ization scheme used.

(b) Two programs which implement Gram-Schmidt orthogonalization
in apparently identical manners differ by a factor of 2 in computation time
required. The reason for this factor can be found upon a detailed examination,
but “mathematically” the programs are the “same”.

(c) Two programs were compared which use Gram-Schmidt and the
Forsythe scheme based on the three term recurrence relation. All other
factors are as identical as possible. The Forsythe scheme is relatively more
efficient for high degrees. The factors of improvement observed are 1.1, 1.3,
1.4, 1.6 for m = 2, 4, 6, 8, respectively.

We may summarize this analysis and these experiments by saying that
running orthogonalization gives a very significant improvement in compu-
tation efficiency compared to Method 1 and is fairly competitive with
Method 3. The difference between Methods 2 and 3 is no more than that
caused by seemingly trivial differences in different implementations of
Method 3.

640/4/3-8



338 RICE

Several tests were made to see if running orthogonalization is numerically
stable. With M up to 400 and #» up to 8, no deterioration was observed in the
accuracy. If anything, running orthogonalization gives more accurate results,
especially for high polynomial degrees.



